Extended Abstract

Motivation Recent advances in models like DeepSeek-R1 and Qwen demonstrate that curated data
and targeted supervised fine-tuning, combined with reinforcement learning, can achieve state-of-
the-art Al performance without relying on resource-intensive training with large-scale GPU clusters.
To explore these advancements, we investigated the impact of data quality, SFT, and RL on model
performance and evaluated whether an optimal allocation exists for efficiently training Al models. The
findings of this research hold significant potential for the industry, where cost and energy efficiency
are critical for scaling Al solutions. Lower energy requirements align with growing industry demands
for sustainable practices, reducing the carbon footprint of Al development and deployment.

Method To test our hypotheses on efficient Al training, we used the Qwen2.5-0.5B model to solve
the Countdown task, which challenges models to create accurate equations from given numbers. The
Countdown task was chosen because it requires both mathematical reasoning and creative problem-
solving, making it a challenging benchmark for evaluating data quality and training efficiency. We
conducted three experiments. First, we tested the impact of data quality on supervised fine-tuning
performance using the WarmStart dataset (1,000 problems with known quality issues), a corrected
dataset (1,000 problems with errors fixed), and a synthetically enhanced dataset (1,000 problems
with multiple valid solutions per problem). Second, we analyzed the uplift provided by reinforcement
learning (RL) after SFT, starting from initial success rates of 12% (low) and 44% (high). Finally,
we assessed how varying the proportion of SFT versus RL training steps, within a fixed compute
budget of 10,000 gradient update steps, impacts model performance on the Countdown task, aiming to
determine if an optimal allocation exists. Performance was measured by the success rate (percentage
of problems solved correctly) and a reward score based on response presence and correctness. These
experiments aim to identify training strategies that reduce compute demands, aligning with industry
needs for cost-effective and sustainable Al development.

Implementation We implemented our experiments using the Qwen2.5-0.5B model with Hugging
Face Transformers and PyTorch, writing our own SFT and RL code in PyTorch for the Countdown
task. We used Hydra for configuration management and Weights & Biases (wandb) for tracking
metrics and visualizing results. Training was conducted using Nvidia L4 48GB. We trained SFT with
arange of parameters (learning rate, decay of 0.005, batch size) to select the best performing. [RL
used Proximal Policy Optimization with a two-stage reward (response presence and correctness) for
150 steps]. Custom libraries were developed to evaluate LLMs for RL synthetic data.

Results For our first experiment, we started by conducting SFT training. The performance of the
SFT model on the poor quality dataset was low at 6%. With the corrected dataset, the performance
was 11%, suggesting that the model did not learn. The synthetically enhanced dataset with multiple
solutions reached 60% after 20k steps. For our second experiment, we applied RL to SFT-trained
models with initial success rates of respectively 12% and 44%. We observed that the uplift of
performance was similar at 80% with only 150 steps. For our last experiment, we observe that there
was no benefit in spending more than 20k steps finetuning on a quality datasets, but that on a poor
quality dataset, thus difficult to learn, it was optimal to conduct SFT up to 70k or 80k steps, and the
residual 20k or 30k be allocated to SFT

Discussion Through the experiments, we learned the importance of quality data to speed up the
models learning process. We were surprised that cleaning up a dataset to only have correct answers
had limited impact on the performance of the model. On the contrary, generating multiple correct
answers foe each mathematical question allowed the model to learn and created a huge bump in
performance. With 20k steps for SFT training on a dataset with multiple solutions per question, it
was possible to obtain a performance of 60%. We observed that the performance of applying RL to a
SFT-trained model was a similar uplift in percentage irrespective of the initial SFT performance rate.

Conclusion Though exploratory and only based on a small model Qwen2.5-0.5b, our research
appears to show that there is an optimal allocation between data curation, SFT and RL. The main
limitation is that the work was performed on just one specific task: countdown. It would be interesting
to understand how the optimum would change when tackling different kinds of tasks. We could
consider, for example, Meta-Learning with multiple tasks.

Train smarter LLMs: balancing Data Quality,
Fine-Tuning and Reinforcement Learning

Gabriel Mesquida Masana Francois Chesnay
Stanford University Stanford University
gabmm@stanford.edu fchesnayastanford.edu
Abstract

Innovative large language models have demonstrated that high performance can be
achieved without GPU-intensive approaches, reducing training and inference costs
while mitigating energy consumption and societal impacts. This study leverages the
Countdown task, previously used by DeepSeek R1, to successfully apply reasoning
through reinforcement learning (without human feedback. We investigate and
quantify the relative contributions of data curation, supervised fine-tuning, and
RL to model performance, and propose an optimal framework for efficient LLM
training.

1 Introduction

1.1 Challenges in Large Language Models

Large language models have shown remarkable proficiency in natural language processing tasks
(Hendrycks et al.,2020; (Clark et al.l 2018). However, they often struggle with complex reasoning
tasks (Wei et al., [2022a) and accessing up-to-date external information (Jin et al., [2024). These
limitations necessitate advancements in reasoning capabilities (Huang and Chang| 2022)) and effective
integration with external knowledge sources, such as search engines (Schick et al.,|2023), to enhance
their practical utility.

1.2 Advancements in Reasoning with Reinforcement Learning

Reinforcement Learning (RL) has emerged as a powerful approach to improve LLM reasoning
(Yang et al., 2025} \Guo et al.l 2025; Hou et al., [2025} |Xie et al., 2025b)). For example, |Yang et al.
(2025)) trained a 3B-parameter model on the Countdown Game, a numerical reasoning task, using
pure RL, achieving superior performance on four out of five benchmarks and demonstrating strong
generalization. Similarly, models like OpenAl-ol (Jaech et al., [2024)) and DeepSeek-R1 (Guo et al.,
2025) employ RL techniques such as Proximal Policy Optimization (PPO) (Schulman et al, 2017)
to enhance logical inference and problem-solving, enabling capabilities like self-verification (Weng
et al.| |2022) and self-correction (Kumar et al.,2024). Recent work by Jin et al.| (2025)) further explores
training LLMs to reason and leverage search engines using RL, highlighting the potential of RL to
address information retrieval challenges.

1.3 Efficient Post-Training Strategies

Post-training plays a critical role in aligning LLMs with robust reasoning, ethical standards, and
user needs while minimizing computational costs. Unlike resource-intensive pre-training, post-
training leverages efficient methods such as Reinforcement Learning from Human Feedback (RLHF)
(Christiano et al.l 2017 Ziegler et al., [2019), instruction tuning (Wei et al., 2021)), and Direct
Preference Optimization (DPO) (Rafailov et al.,|2023). These techniques enhance generalization,

Stanford CS224R 2025 Final Report

reduce biases, and lower computational demands (Hu et al., 2021)). Supervised Fine-Tuning further
adapts pre-trained LLMs to specific tasks using labeled data (Ouyang et al.| |2022), though collecting
such datasets can be resource-intensive, underscoring the need for optimized post-training strategies.

1.4 Evolution of Reasoning Techniques

Reasoning is fundamental to LLM versatility across domains. Early methods relied on prompt
engineering, such as Chain-of-Thought (CoT) reasoning, which encourages models to generate
intermediate steps for tasks like mathematical problem-solving (Wei et al., |2022b). More recent
advancements, such as OpenAI’s O-series models, utilize inference-time scaling to extend CoT into
longer reasoning chains, significantly improving performance (OpenAll [2024). Complementary
approaches, including Monte Carlo Tree Search (MCTS) (Silver et al., [2016; [Feng et al.| |2024) and
process-based reward models (Lightman et al., 2023} [Uesato et al., [2022), further enhance reasoning
capabilities.

1.5 Objectives and Motivation

This study explores the interplay of data quality, supervised fine-tuning, and reinforcement learning
(RL) in enhancing large language model (LLM) performance, using the Qwen2-5.0-5B model on
the Countdown task—a numerical reasoning challenge requiring creative problem-solving. Our
experiments evaluate how dataset quality, the balance of SFT and RL training, and computational
efficiency impact reasoning capabilities, aiming to identify training strategies that maximize per-
formance while supporting sustainable Al practices. Recent advancements, such as DeepSeek-R1
and Qwen, demonstrate that high-quality data, targeted SFT, and RL can achieve state-of-the-art
results without relying on resource-intensive GPU clusters, offering significant potential for cost- and
energy-efficient Al scaling in industry.

Inspired by DeepSeek-R1 Zero |Guo et al.| (2025), a breakthrough that used RL to significantly
reduce LLM training costs, we investigate optimal strategies for balancing data curation (high-quality
datasets) and resource allocation. Our key contribution is developing efficient training pipelines that
minimize costs and accelerate learning, enabling high-performing LLMs for reasoning tasks with
reduced environmental impact.

2 Related Work

Synthetic data augmentation has been widely explored to enhance LLM performance, particularly
for reasoning tasks. |Guo et al.| (2025) employed rejection sampling to generate high-quality datasets
for math reasoning with DeepSeek-R1, combining synthetic data with SFT to improve performance,
though their approach was tailored to specific tasks and models. [Yang et al.| (2025) applied pure
RL to the Countdown task, using synthetic data to train a 3B-parameter model, achieving strong
generalization across benchmarks. Similarly, Xie et al.| (2025a) used rule-based RL with synthetic
logic puzzles to develop reasoning skills that generalize to challenging math benchmarks like AIME
and AMC. These works highlight the potential of synthetic data in reasoning tasks but often do not
address computational efficiency or task-specific adaptation for the Countdown task, which our study
aims to explore.

RL has been increasingly utilized to optimize LLM training efficiency. [Lee et al.|(2024) introduced
RL from AI Feedback (RLAIF), scaling preference learning with Al-generated feedback, which
informs our approach to RL optimization. [Jin et al.| (2025) explored training LLMs to reason and
leverage search engines using RL, focusing on efficient information retrieval. |[Lian| (2025)) further
demonstrated the effectiveness of RL in reasoning tasks, reinforcing its applicability to numerical
challenges like the Countdown task. Unlike prior work, our study emphasizes balancing SFT and
RL within a fixed compute budget to achieve efficient training, addressing both performance and
sustainability.

Over-reliance on synthetic data can lead to model collapse, where performance degrades over time.
Shumailov et al.| (2024)) observed this phenomenon when fine-tuning GPT-2 and OPT-125m with
synthetic data, leading to task degradation. Similarly, Kazdan et al.|(2025) noted potential degradation
in Gemma?2 models trained on synthetic data. These risks are critical considerations in our work, as

we aim to optimize synthetic data use for the Countdown task while mitigating potential downsides
through careful dataset design and training strategies.

3 Method

3.1 Overview and Model Selection

To investigate efficient Al training strategies, we use the Qwen2-5.0-5B model to address the
Countdown task, a numerical reasoning challenge where the model must form an equation equaling a
target value using a given set of numbers exactly once with basic arithmetic operations (+, —, x, /).
This task was chosen because it requires both mathematical reasoning and creative problem-solving,
making it an ideal benchmark for evaluating the impact of data quality and training efficiency on
LLM performance. The Qwen2-5.0-5B model, a relatively small-scale LLM, allows us to explore
these effects while keeping computational costs manageable, aligning with our focus on sustainable
Al development.

3.2 Experiment 1: Impact of Data Quality on SFT

The first experiment assesses how data quality affects Supervised Fine-Tuning (SFT) performance.
We use three datasets, each containing 1,000 training examples: (i) the original WarmStart dataset
with a 60% error rate, (ii) a corrected WarmStart dataset with one valid solution per problem, and (iii)
a synthetically enhanced WarmStart dataset with multiple valid solutions per problem (3,250 rows
total). The synthetic dataset was generated to provide diverse solution paths, addressing the constraint
that all numbers must be used exactly once. We fine-tune the model on each dataset and measure the
success rate (percentage of problems solved correctly) and a reward score based on response presence
and correctness. Additionally, we analyze the number of training steps required to achieve a target
performance level (e.g., success rate above 30%), providing insights into the efficiency of learning
from varying data quality.

3.3 Experiment 2: RL Uplift After SFT

The second experiment evaluates the performance uplift provided by Reinforcement Learning (RL)
following SFT. We start with two SFT-trained models: one with a low initial success rate of 12%
(trained on the original WarmStart dataset) and another with a higher success rate of 44% (trained on
the corrected dataset). RL is applied using Proximal Policy Optimization (PPO) with a two-stage
reward function (response presence and correctness) for 150 steps. Performance is measured by the
increase in success rate post-RL, aiming to understand how RL can enhance reasoning capabilities

original low-quality sample

A conversation between User and Assistant. 57 = 3 x 19, so having 19 is helpful.

The user asks a question, and the Let me try working with 75 first:

Assistant solves it. The assistant first 75 - 19 = 56, which is close to 57!

thinks about the reasoning process in the So we need to add 1 somehow using 39 and

mind and then provides the user with the 75.

answer. User: Using the numbers [75, 19, Looking at 39 and 75:

39, 75], create an equation that equals 57. 75 / 75 = 1

You can use basic arithmetic operations Then we can use this 1 to add to 56.

(+, -, *, /) and each number can only be Let’s verify the full sequence:

used once. Show your work in <think> 1. First get 56: 75 - 19 = 56

</think> tags. And return the final 2. Then get 1: 75/ 75 = 1

answer in <answer> </answer> tags, for 3. Finally add 1 to 56: 56 + 1 = 57

example <answer> (1 + 2) / 3 </answer>. Working backwards to ensure we use all

Assistant: Let me solve this step by numbers and reach s57:

step. ((75 - 19) + (75 / 75)) - 39 = 57
</think>

Let me try to find a way to reach 57 using <answer> ((75 - 19) + (75 / 75)) - 39

these numbers. </answer>

First, let me look for factors or nearby

numbers to 57.

Figure 1: Erroneous sample from original data set. Analysis show that the original
WarmStart dataset has & 60% error rate.

regardless of initial SFT performance, and the computational cost of this uplift in terms of gradient
updates.

3.4 Experiment 3: Balancing SFT and RL Training Steps

The third experiment examines the optimal allocation of SFT and RL training steps within a fixed
compute budget of 10,000 gradient updates. Using the synthetically enhanced dataset, we vary
the proportion of steps allocated to SFT versus RL (e.g., 70% SFT and 30% RL) and measure the
resulting success rate and reward score on the Countdown task. We also track computational efficiency
by monitoring energy consumption during training, ensuring alignment with sustainable practices.
This experiment aims to identify a training strategy that maximizes reasoning performance while
minimizing computational resources, addressing the industry’s need for cost-effective Al solutions.

4 Experimental Setup

For the Countdown task, we fine-tuned the Qwen2.5 0.5B model on the math problems Countdown-
Tasks-3to4 train set (1,000 observations) with a learning rate of 2.0 x 10~ and learning rate decay
of 0.005, and the training loss was decreasing as expected as shown in figure ??. The evaluation was
based on Countdown-Tasks-3to4 test set (200 observations). Reward was computed based on a two
stage reward: response presence and correctness following TinyZero.

The SFT training was initially conducted on Warmstart, a low-quality dataset with a 60% error rate.
An example of incorrect answer in the initial data is presented below. The solution uses the correct
list of number, but evaluates to 18 and not to the target solution of 57:

The low quality of the original dataset hinders any model’s ability to learn a complex task from
inaccurate data. To resolve this issue, we refined the data and developed two new datasets, as outlined
below.

4.1 Creating a corrected dataset

We created a new dataset based on Warmstart correcting the thought processes and mathematical
solutions. We used Gemini API to generate solutions and check the validity of the solutions generated.
The code used is included in appendix. An example of solution generated by Gemini has also be
included in appendix. The corrected data set is available at|clean_Asap7772_cog_behav_all_strategies.
It contains only valid solutions (train set 1k rows and test set 200 rows).

4.2 Creating a synthetically enhanced dataset

In addition to the corrected dataset, we also created a synthetically enhanced dataset with multiple
answers. The rationale of providing multiple answers was to avoid overfitting by giving more chances

synthetic_data_warmstart_3.25k sample

<think>
To get 62 using 81, 57, 98, and 7, I need

A conversation between User and Assistant.
The user asks a question, and the

Assistant solves it. The assistant first
thinks about the reasoning process in the
mind and then provides the user with the
answer. User: Using the numbers [81, 57,
98, 7], create an equation that equals 62.
You can use basic arithmetic operations
(+, -, *, /) and each number can only be
used once. Show your work in <think>
</think> tags. And return the final
answer in <answer> </answer> tags, for
example <answer> (1 + 2) / 3 </answer>.
Assistant: Let me solve this step by
step.

to combine these numbers with arithmetic
operations. I’'ll start by trying to use
multiplication and subtraction, as those
often lead to larger intermediate values.
I need to find a combination that isolates
62 as a result. Subtracting 81 from 98
gives 17. Multiplying 7 by 17 gives 119.
Subtracting 57 from 119 gives 62. This
works!

</think>

<answer> (7 * (98 - 81)) - 57 </answer>

Figure 2: Al-generated data augmentation sample from the synthetically enhanced data
set synthetic_data_warmstart_3.25k. The full dataset can be accessed at
https://huggingface.co/datasets/fchesnay/synthetic_data_warmstart_3.25k.

https://huggingface.co/datasets/fchesnay/clean_Asap7772_cog_behav_all_strategies
https://huggingface.co/datasets/fchesnay/synthetic_data_warmstart_3.25k

for the model to really learn how to solve mathematical problems rather than simply memorize one
answer per question.

We created code calling Grok API in order to generate multiple valid solutions. For each mathematical
question, called Grok’s api 5 times, and we ended up with on average 3.25 valid solutions per
question. The synthetically augmented dataset is available at| synthetic_data_warmstart_3.2skl It
contains multiple correct answers (train set 3.25k rows and test set 200 rows).

5 Results

5.1 Experiment 1: Impact of Data Quality on SFT

The CountDown task presents a distinctive and intricate challenge for large language models (LLMs),
as it demands the simultaneous computation of loss for both the reasoning process and the final
answer, a task complicated by the diverse array of potential solutions and the need for coherent,
step-by-step reasoning. This dual requirement tests the model’s ability to not only arrive at a correct
outcome but also to articulate a logical and verifiable thought process, which is critical for tasks
requiring deep reasoning.

We initially conducted Supervised Fine-Tuning on Warmstart, a low-quality dataset with a 60% error
rate, resulting in poor performance (5%, blue line in the graph below).

We hypothesized that a cleaner dataset would significantly improve outcomes, thus we corrected the
Warmstart dataset to have correct thought processes and mathematical solutions, but the performance
remained underwhelming (8%, green line in the graph below).

The CountDown task poses a unique challenge for large language models, as it requires computing
loss for both the reasoning process and the final answer-a complex task due to the variety of possible
solutions, thus making learning difficult and prone to overfitting. We thought that a possibility to
increase learning was to synthetically generate multiple answers for each questions, thus giving
more chances for the model to really learn how to solve mathematical problems rather than simply
memorize one answer per question.

With our newly created enhanced dataset representing on average 3.25 answers per questions, we
conducted Supervised Fine-Tuning again, and achieved a huge performance gain (lines in red and
orange). With a learning rate of 2.4 x 10, the average performance was 44%, with a 60% pick in
performance at 2,000 steps. The performance with a learning of 2.5 x 10~* was close at 40%. A
learning rate of 2.5 x 10~% was too low and only achieved a performance of 24%.

ra
La

eval/success_rate I

60

40

20

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10k

Run » Value Step Relative
cleaned_model_Asap7772_cog_behav_all_strategies_2025-06-04_05-27-18 7.8788 10,000 1.772 hr

® qwen_sft_synthetic_c_Ir_2e-05_batch_4_rows_3207_2025-06-02_16-33-35 24.8485 10,000 2.555 hr

@® qgwen_sft_warmstart_c_Ir_2e-05_batch_4_rows_1000_2025-06-02_19-16-17 4.8485 10,000 2.164 hr
qwen_sft_warmstart_synthetic_data_6000_Ir_2.4e-05_batch_4_rows_3207_2025-06-03_20-41-26 44.2424 10,000 2.562 hr

® qgwen_sft_warmstart_synthetic_data_c_6000_Ir_2e-05_batch_4_rows_3207_2025-06-03_09-36-28 40.6061 10,000 2.606 hr P

Figure 3: Countdown SFT success rate with synthetic, corrected and original datasets.
Note how the corrected dataset shows little improvement from the baseline dataset whilst
Al data augmentation provides a significant increase in success rate.

https://huggingface.co/datasets/fchesnay/synthetic_data_warmstart_3.25k

The SFT training was initially conducted on Warmstart, a low-quality dataset with a 60% error rate.
The performance was poor (5%, blue line in the graph above).

We hypothesized that a cleaner dataset would significantly improve outcomes, thus we corrected the
Warmstart dataset to have correct thought processes and mathematical solutions, but the performance
remained underwhelming (8%, green line in the graph below).

The CountDown task poses a unique challenge for large language models, as it requires computing
loss for both the reasoning process and the final answer-a complex task due to the variety of possible
solutions, thus making learning difficult and prone to overfitting. We thought that a possibility to
increase learning was to synthetically generate multiple answers for each questions, thus giving
more chances for the model to really learn how to solve mathematical problems rather than simply
memorize one answer per question.

With our newly created enhanced dataset representing on average 3.25 answers per questions, we
conducted Supervised Fine-Tuning again, and achieved a huge performance gain (lines in red and
orange, respectively 40% and 44%).

With a learning rate of 2.4 x 10™4, the average performance was 44%, with a 60% pick in performance
at 2,000 steps. The performance with a learning of 2.5 x 10~* was close at 40%. A learning rate of
2.5 x 10~ was too low and only achieved a performance of 24%.

We explored a range of parameters to optimize performance on our enhanced synthetically generated
and noted that a learning rate of 2.4 x 105 (orange line) yields the best performance, as shown in the
graph below. A learning rate of 3.0 x 10~° (red line) was too high, was a learning rate of 1.0 x 107>
(dark blue line) was too low.

eval/success_rate 1;[0l
60
40
20
1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10k
7
Run Value Step Relative
qwen_sft_warmstart_synthetic_data_6000_Ir_2.4e-05_batch_4_rows_3207_2025-06-03_20-41-26 44.2424 10,000 2.562 hr
® qwen_sft_warmstart_synthetic_data_c_6000_Ir_1e-05_batch_4_rows_3207_2025-06-02_14-55-41 22.4242 10,000 2.86 hr
® qwen_sft_warmstart_synthetic_data_c_6000_Ir_2e-05_batch_4_rows_3207_2025-06-03_09-36-28 40.6061 10,000 2.606 hr
® gwen_sft_warmstart_synthetic_data_c_6000_Ir_3e-05_batch_4_rows_3207_2025-06-03_12-59-01 321212 10,000 2.573 hr P

Figure 4: Countdown SFT success rate with synthetic enhanced dataset for various learning
rates. Note how the lowest learning rate also resulted in the lowest success rate.

We conclude that high-quality data—defined as datasets containing multiple distinct answers for each
mathematical question to prevent overfitting and enable genuine learning rather than memorization—is
critical for effective model training. With such data, minimal supervised fine-tuning training, using as
few as 2,000 examples in our case, proves optimal. This approach allows resources to be prioritized
toward reinforcement learning, resulting in faster, more cost-efficient training and significantly
reduced power demands on data centers. This is illustrated by the graph below showing that the
majority of the loss has been captured at 20k steps.

5.2 Experiment 2: RL Uplift After SFT

We applied RL to SFT-trained models with initial success rates of 12% and 44% respectively. We
observed an increase in performance of 80% with only 150 steps. Further improvements may be
possible with more training.

train/loss El I|L -

10k 20k 30k 40k 50k 60k 70k 800(
%

Value Step Relative
0.9529 80,000 8.108 hr

Run

qwen_sft_smoltalk_name_qgwen_sft_smoltalk_Ir_2e-
05_Ir_decay_0.005_bs_8_train_size_452272_batch_size_8_gradient_update_2_2025-05-30_04-01-15

qwen_sft_smoltalk_name_qwen_sft_smoltalk_Ir_2e- 0.9413 79,900 9.993 hr
05_Ir_decay_0.005_bs_8_train_size_452272_batch_size_8_gradient_update_2_2025-05-31_05-34-48 P

Figure 5: Countdown SFT training loss on synthetic enhanced dataset for a couple of
different runs.

For illustration purpose, we have included below a graph showing the performance on the CountDown
task using various values of k (k=8 green lines and k=16 in red lines), learning rates and batch sizes.
The experiments suggest that the optimal value is for k=8, which also represents a better outcome
than k=16 and which is also much faster.

eval/success_rate [R "

25

20

N ALY

WO

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30(

%
Run ™ Smoothed Value Step Relative
® qgwen_rloo_countdown_c_k_16_Ir_1e-05_batch_8_rows_490364_2025-06-03_16-25-04 12.4067 11.5 300 10.9 hr
qwen_rloo_countdown_c_k_8_Ir_1e-05_batch_4_rows_490364_2025-06-04_11-33-04 16.1004 16 140 2.49 hr
qwen_rloo_countdown_c_k_8_Ir_1e-05_batch_8_rows_490364_2025-06-04_15-59-20 21.9308 10 300 10.82 hr
qwen_rloo_countdown_k_8_beta_0.05_Ir_5e-06_batch_4_rows_490364_2025-06-06_17-09-52 12.7143 6 300 6.197 hr

Figure 6: Qwen RLOO success rate with various learning rates and batch sizes. Note that
these training runs do not include the KL loss, which is included in equivalent Figure@

5.3 Optimal allocation

We experimented with determining the optimal number of steps for Supervised Fine-Tuning, consid-
ering the quality of the underlying dataset.

We observed that, to enable the model to learn effectively and avoid overfitting, multiple answers
per question are necessary. Additionally, we noted that the datasets used to train our models did not
align with the holdout data, which contained larger target values and included more numbers than
the maximum of four encountered previously. This mismatch highlights the need for training data to
closely match the test dataset, explaining the poor final performance on the holdout dataset.

Having completed the SFT, we considered that a Reinforcement Learning with Outcome Optimization
forward step requires k generations and one forward pass, compared to one forward pass for SFT.

Additionally, the calculation of the KL divergence term could be applied to both SFT and RLOO if
desired, but this alone did not enable a meaningful comparison.

To draw meaningful conclusions, it would be necessary to estimate the costs of data curation, SFT,
and reinforcement learning (RL). This would allow us to determine the optimal allocation of training
resources.

6 Discussion

Through the experiments, we learned the importance of quality data to speed up the models learning
process.

We were surprised that cleaning up a dataset to only have correct answers had limited impact on the
performance of the model.

On the contrary, generating multiple correct answers foe each mathematical question allowed the
model to learn and created a huge bump in performance.

With only 20k steps for SFT training on a dataset with multiple solutions per question, it was possible
to obtain a performance of 60%. We observed that the performance of applying RL to a SFT-trained
model was a similar uplift in percentage irrespective of the initial SFT performance rate.

We contribute two new datasets should they be wuseful for future CS224R co-
horts: clean_Asap7772_cog_behav_all_strategies, which is Al-corrected, and the second
synthetic_data_warmstart_3.2sk|which is Al-augmented and contains multiple correct answers.

7 Conclusion

Though exploratory and only based on a small model Qwen2.5-0.5b, our research appears to show
that there is an optimal allocation between data curation, data augmentation, SFT and RL. Further
work should be required to quantify this balance.

The main limitation is that the work was performed on just one specific task: countdown. It would be
interesting to understand how the optimum would change when tackling different kinds of tasks. We
could consider, for example, Meta-Learning with multiple tasks.

Part of this limitation is due to our interest to explore RLOO, DPO and, in an additional experiment,
DPO-Positive, to maximize our learning of the very wide scope initially defined in the default project.
This, in a two-member team, detracted potential time to quantify the above conclusions.

8 Team Contributions

Our initial intent was to cover all the experiments together but, due to the wide scope, each of us
focused on different parts and then shared the learning:

* Gabriel Mesquida Masana: coded a revised version of the SFT. Coded all the RL models.
Configured servers and vLLM, trained models, ran experiments. Reviewed, commented on
and amended the first draft of the report.

* Francois Chesnay: created libraries for countdown and for instruct, debugged bugs in
the countdown implementation code provided to us. Wrote the first draft of the project.
Configured servers and vLLM, trained models, ran experiments.

Changes from Proposal The original proposal outlined three methodological questions on super-
vised fine-tuning (SFT) data quality, the balance of SFT versus reinforcement learning (RL) within
a 10,000-step compute budget, and paired preference dataset construction for Direct Preference
Optimization (DPO) for the Countdown task. The revised proposal re-frames these into a cohesive
experimental framework using the Qwen2.5-0.5B model, testing three datasets (original, corrected,
and synthetic WarmStart, each 1,000 problems), RL uplift from 12% and 44% initial success rates,
and SFT versus RL allocation, while omitting the DPO question. It defines success rate and reward
score as metrics and aligns with industry goals for sustainable Al, enhancing practical relevance and
rigor.

https://huggingface.co/datasets/fchesnay/clean_Asap7772_cog_behav_all_strategies
https://huggingface.co/datasets/fchesnay/synthetic_data_warmstart_3.25k

References

Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. 2017.
Deep Reinforcement Learning from Human Preferences. arXiv preprint arXiv:1706.03741 (2017).

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. 2018. Think you have Solved Question Answering? Try ARC, the AI2 Reasoning
Challenge. arXiv preprint arXiv:1803.05457 (2018).

Xidong Feng, Ziyu Ying, Boya Zhang, Xingwei Chen, and Zeyuan Tang. 2024. AlphaMath: Solving
Math Problems via Direct Policy Optimization. arXiv preprint arXiv:2408.11159 (2024).

Yuxuan Guo, Qiming Wang, Jinxin Liu, Ziyang Liu, Peng Hao, Yiming Yang, Donglai Wei, Feifei
Huang, and Fangrong Chen. 2025. DeepSeek-R1: Raising the Bar for Open-Source Reasoning
Models. arXiv preprint arXiv:2502.04761 (2025).

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
cob Steinhardt. 2020. Measuring Massive Multitask Language Understanding. arXiv preprint
arXiv:2009.03300 (2020).

Yifei Hou, Yucheng Wang, Xueqing Zhang, Wayne Xin Huang, Xu Wang, Jiaxin Li, Zhihao Zhang,
Hao Peng, Yujie Tang, Zhaofeng Wang, Jianbin Su, Jingang Lu, Yongbin Yang, and Jiancan
Lu. 2025. From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven
Autonomous Systems. arXiv preprint arXiv:2503.09843 (2025).

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, and
Weizhu Chen. 2021. LoRA: Low-Rank Adaptation of Large Language Models. arXiv preprint
arXiv:2106.09685 (2021).

Jie Huang and Kevin Chen-Chuan Chang. 2022. Towards Reasoning in Large Language Models: A
Survey. arXiv preprint arXiv:2212.10403 (2022).

Aaron Jaech, Daniel Furman, and OpenAl. 2024. ol: A Step Forward in Reasoning-Focused
Language Models. OpenAl Technical Report (2024).

Bowen Jin, Hansi Zeng, Zhenrui Yue, Jinsung Yoon, Sercan Arik, Dong Wang, Hamed Zamani,
and Jiawei Han. 2025. Search-R1: Training LLMs to Reason and Leverage Search Engines with
Reinforcement Learning. arXiv preprint arXiv:2503.09516 (2025).

Honglin Jin, Krishna Krishna, John Wieting, and Jeffrey Pennington. 2024. The Trade-offs of Model
Size in Large Recommendation Models: A Quality and Societal Impacts Perspective. arXiv
preprint arXiv:2407.03366 (2024).

Joshua Kazdan, Rylan Schaeffer, Apratim Dey, Matthias Gerstgrasser, Rafael Rafailov, David L.
Donoho, and Sanmi Koyejo. 2025. Collapse or Thrive? Perils and Promises of Synthetic Data in a
Self-Generating World. arXiv preprint arXiv:2410.16713 (2025).

Aviral Kumar, Vincent Zhou, Abhishek Sharma, and Sergey Levine. 2024. Language Models as
Compilers: Simulating Pseudocode Execution Improves Algorithmic Reasoning. arXiv preprint
arXiv:2407.04622 (2024).

Harrison Lee, Samrat Phatale, Hassan Mansoor, Thomas Mesnard, Johan Ferret, Kellie Lu, Colton
Bishop, Ethan Hall, Victor Carbune, Abhinav Rastogi, and Sushant Prakash. 2024. RLAIF vs.
RLHF: Scaling Reinforcement Learning from Human Feedback with Al Feedback. arXiv preprint
arXiv:2309.00267 (2024).

Yongsheng Lian. 2025. Reinforcement Learning is all You Need. arXiv preprint arXiv:2503.09512
(2025).

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe. 2023. Let’s Verify Step by Step. arXiv preprint
arXiv:2305.20050 (2023).

OpenAl. 2024. Scaling Inference-Time Reasoning in Large Language Models. OpenAl Technical
Report (2024).

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton, Fraser Kelton,
Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano, Jan Leike, and
Ryan Lowe. 2022. Training Language Models to Follow Instructions with Human Feedback. arXiv
preprint arXiv:2203.02155 (2022).

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley Roberts, Siddartha Naidu, and Colin
White. 2024. Smaug: Fixing Failure Modes of Preference Optimisation with DPO-Positive.
arXiv:2402.13228 [cs.CL] https://arxiv.org/abs/2402.13228

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and Chelsea
Finn. 2023. Direct Preference Optimization: Your Language Model is Secretly a Reward Model.
arXiv preprint arXiv:2305.18290 (2023).

Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric Cereda, Chun-
yang Yang, and Thomas Scialom. 2023. Toolformer: Language Models Can Teach Themselves to
Use Tools. arXiv preprint arXiv:2302.04761 (2023).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017. Proximal
Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347 (2017).

Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Nicolas Papernot, Ross Anderson, and Yarin Gal.
2024. Al models collapse when trained on recursively generated data. Nature 631, 8022 (2024),
755-759. |https://doi.org/16.1038/541586-024-07566-Y

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the Game of
Go with Deep Neural Networks and Tree Search. Nature 529 (2016), 484—489.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. 2022. Solving Math Word Problems by Combining
Language Models With Symbolic Solvers. arXiv preprint arXiv:2204.09133 (2022).

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M. Dai, and Quoc V. Le. 2021. Finetuned Language Models Are Zero-Shot Learners.
arXiv preprint arXiv:2109.01652 (2021).

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals,
Percy Liang, Jeff Dean, and William Fedus. 2022a. Emergent Abilities of Large Language Models.
arXiv preprint arXiv:2206.07682 (2022).

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. 2022b. Chain-of-Thought Prompting Elicits Reasoning in Large Language
Models. arXiv preprint arXiv:2201.11903 (2022).

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Wen, Shizhu Sun, Yujie He, Kang Liu, and Jun Zhao. 2022.
Large Language Models Need Holistically Thought in Reasoning. arXiv preprint arXiv:2211.01767
(2022).

Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yugian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
Zhirong Wu, and Chong Luo. 2025a. Logic-RL: Unleashing LLM Reasoning with Rule-Based
Reinforcement Learning. arXiv preprint arXiv:2502.14768 (2025).

Tianbao Xie, Siyi Liu, Chenyang Yang, Zihan Tian, Jun Zhang, and Yuxin Peng. 2025b. Large
Language Models as Generalizable Policies for Embodied Tasks. arXiv preprint arXiv:2503.10460
(2025).

Yuzhe Yang, Tianxiang Cui, Yuxin Wang, and Hao Dong. 2025. Reinforcement Learning is all you
need. arXiv preprint arXiv:2503.09512 (2025).

Daniel M. Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B. Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. 2019. Fine-Tuning Language Models from Human Preferences.
arXiv preprint arXiv:1909.08593 (2019).

10

https://arxiv.org/abs/2402.13228
https://doi.org/10.1038/s41586-024-07566-y

A Extra-Credit: Evidence of work performed on Instruct and Countdown
with further exploration of SFT, DPO, RLOO

Prior to building the research extension on the Countdown task, in our intent to maximize exploration
and learning, we coded SFT for both Ultrafeedback and Countdown. We also implemented Rein-
forcement Learning for both tasks. Direct Preference Optimization (DPO) for Instruct and Reinforce
Leave One-Out (RLOO) for Countdown.

A.1 SFT for Ultrafeedback and Countdown

The following figure shows evaluations of SFT runs, both for Ultrafeedback and Countdown, for two
different generation temperatures:

Ultrafeedback SFT: average reward per k-samples Countdown SFT: average reward per epoch
60 T T T T T T T T T
. . °
° v 15 1 i - .
: K °. : o
h= B 2 e e .
g 50 |- hd ° [] * | g 10 |- ‘ [= e |
o ° - S °
2 L] B ® . . 2
® o * o8 € 1 e |
[. S — S
40 < .o ° ..‘ o Temp =0.6
L L L L 0Ll | I e Temp=1 |]
100 200 300 400 0 5 10 15 20 2
k-samples Epochs
Figure 7: Ultrafeedback SFT evaluation by Figure 8: Countdown SFT evaluation by us-
using Nemotron model ing original function compute_score

Several iterations were done of these trainings experimenting with different parameters and hyper-
parameters. This included SFT with the original dataset, the corrected dataset, and the augmented
synthetic dataset as seen in previous figures 3]] and 3]

The implementation can be found in the file train_sft.py.

A.2 Direct Preference Optimization for Ultrafeedback

train/loss train/reward

0692
0.6915

0.691

0.6905 h

0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1,000 1,500 2000 2500 3000 3500 4000 X

Z 7
Run Smoothed Value Step Relati Run ™ Smoothed Value Step Relati
® qwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_Te- 0.6918 0.691 4,000 29.22 ® qwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_Te- 39.7645 35 4,000 29.22
06_batch_4_grad_acc_2_rows_57433_2025-06- 06_batch_4_grad_acc_2_rows_57433_2025-06-
10_07-28-26 10_07-28-26

Figure 9: Ultrafeedback DPO: Loss progression in training (left) and rewards (right) for a
successful run.

In the context of Direct Preference Optimization for instruction tuning for Ultrafeedback using the
ultrafeedback-binarized dataset, Figure |g| shows the evolution of the loss for two different
runs.

From the experimentation and after many train runs, we settled in a low learning rate of ir =
2.5 x 1075, It was not easy to train.

11

The following figure shows the evolution of the DPO log probabilities in Ultrafeedback with dataset
ultrafeedback-binarized:

train/logprobs eval/logprobs

0 500 1,000 1500 2000 2500 3,000 3500 4000 0 500 1,000 1,500 2000 2500 3000 3500 4,000

4 4
Run ™ Smoothed Value Step Relati Run Smoothed ~ Value Step Relati
qwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_Te- 0.0133 0.0234 4,000 29.22 qwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_1e- 0.0175 0.0225 4,000 28.82
06_batch_4_grad_acc_2_rows_57433_2025-06- 06_batch_4_grad_acc_2_rows_57433_2025-06-
10_07-28-26/train_logprobs_chosen 10_07-28-26/eval_logprobs_chosen

® qwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_Te- -0.003 0.0047 4,000 29.22 @ qwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_Te- -0.0179 -0.0175 4,000 28.82
06_batch_4_grad_acc_2_rows_57433_2025-06- 06_batch_4_grad_acc_2_rows_57433_2025-06-
10_07-28-26/train_logprobs_rejected 10_07-28-26/eval_logprobs_rejected

Figure 10: Ultrafeedback DPO: In the figures, for training (left) and eval (right), the

descending log probabilities of chosen (lighter) vs. rejected (darker) and for a bigger

batch size (greens and reds). Rejected log probabilities decrease faster than chosen log
probabilities but both are descending.

We found specially interesting to observe the divergence between the log-probabilities of the chosen
and rejected samples. We expected rejected log-probabilities to descend, but we were surprised to see
that, eventually, the chosen log probabilities were also descending. At that point the model ceased to
be useful.

Ultrafeedback SFT: DPO effect on average reward per epoch

% Reward

20 |- — -

® ¢ e Temp = 0.6
\ \ \ \ \ \ \
500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
Steps

ol

Figure 11: Ultrafeedback DPO evaluation: rewards starting from SFT model at 26%
provide a relevant increase in reward.

A.3 Additional Experiment 3: DPO-Positive for Ultrafeedback

The observed eventual downward trend in chosen log probabilities, however, raises concerns about
potential model degradation over training iterations. This issue underscores the challenges in
maintaining model performance with DPO.

Alternative approaches, such as DPO-Positive (Pal et al.,[2024)), have been explored by researchers
to mitigate these effects. Their objective is to increase the relative probability between chosen and
rejected classes without degrading the former.

Our experience shows them significantly more challenging to train effectively as the loss minimization
focuses on the rejected log probabilities.

Due to time constraints we didn’t get deeper into this topic in order to offer more than qualitative
assessments, but we identified this topic as an interesting area for further exploration.

The code for DPO and DPO-Positive can be found in the file train_dpo_dpop.py.

12

eval/logprob_difference

0.03

0.02 M

0.01

W

0 500 1,000 1,500 2,000 250
i
Run + Smoothed Value Step Rela
® qwen_dpo_ultrafeedback_m_DPOP_beta_0.1_Ir_T1e- 0.0092 0.0144 2,300 16.7
06_batch_4_grad_acc_2_rows_57433_2025-06-
10_09-35-39
® qgwen_dpo_ultrafeedback_m_DPO_beta_0.1_Ir_1e- 0.0242 0.0316 2,500 17.8
06_batch_4_grad_acc_2_rows_57433_2025-06-
10_07-28-26

Figure 12: Logprob difference in DPO-P is less than DPO as it only acts on the rejected
log probabilities.

A.4 REINFORCE Leave One-Out (RLOO) for Countdown

We coded REINFORCE Leave One-Out (RLOO) and experimented with different &, learning rates
and batch sizes.

Figure [13] shows the effect of the parameter k and Figure[14]the effect of different learning rates.

train/loss

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30(
7

Figure 13: RLOO experimenting with different Ks given a SFT model: for k = 4, red
line, the signal is too weak to reduce the loss; this is not the case when k& = 8, purple line,
or k = 16, green line.

We also experimented with low and higher performance SFT models as a first step prior to RL, as
shown in the graph below with a low performance Countdown SFT to which RLOO was applied:

Figure[T5]shows RLOO initially increasing the average reward per epoch in countdown SFT evaluation
from 12% to a peak of 19% within 80 steps, but this improvement fluctuates and stabilizes at around
16% by 180 steps, indicating instability with a temperature parameter of 0.6. This suggests that
while RLOO provides early gains, its long-term effectiveness is limited, potentially requiring further
refinement.

Additionally, we added a Kullback—Leibler divergence term to contain the distribution divergence
with regards to the initial model. Figure [T6] shows how the loss is distributed between different
components. Note that previous Figure [6]did not include the KL term whilst Figure [T4]includes the

13

eval/success_rate =3 J;[H

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30(

a
Run ™ Smoothed Value Step Relative
® qwen_rloo_countdown_k_8_beta_0.05_Ir_1e-05_batch_8_rows_490364_2025-06-07_02-19-25 18.903 15 300 10.87 hr
@® qwen_rloo_countdown_k_8_beta_0.05_Ir_1e-06_batch_8_rows_490364_2025-06-07_02-22-16 16.2411 16 300 11.36 hr
® qwen_rloo_countdown_k_8_beta_0.05_Ir_2.5e-05_batch_8_rows_490364_2025-06-07_08-02-37 15.6792 11.5 180 6.033 hr

Figure 14: RLOO with KL loss experimenting with different learning rates: Ir = 2.5 X

1075, red line, and I = 1 x 107°, blue line, seem to have an initial spike and descend

quickly in success rate, whilst Ir = 1 x 107>, green line, grows more progressively and

seems more stable. Note the smoothing applied as, otherwise, there are peaks up to 50%.

Also compare with Figure [which does not have the KL term and is apparently more
stable.

Countdown SFT: RLOO effect on average reward per epoch

T T T T T T T T T T
20 |- . .
he
~ 18 |- e ® N
g o
E 16 |- e . ° .
St e e ° .
L ' ° L R
12 - hd k4 Y e Temp =0.6
| | | | | | | | |

0 20 40 60 80 100 120 140 160 180
Steps

Figure 15: Countdown RLOO evaluation: rewards starting from SFT model at 12%
provide a relevant increase in reward.

KL term. Further analysis is required but, the KL term, seems to degrade success rate as the training
progresses. The 3 factor for the KL term requires some adjustment.

Finally, Figure[T7)shows the evolution of the length of the model responses throughout the training.
The code for RLOO can be found in the file train_rloo.py.

14

train/loss_composition

N

\'/WW / W \/v\ NW »,\ i

VWMM‘NN'MNI\/‘

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30(
7
Smoothed Value Step Relative

Run ™
0.3659 0.3633 300 10.79 hr

© qwen_rloo_countdown_k_8_beta_0.05_Ir_1e-05_batch_8_rows_490364_2025-06-07_02-19-
25/train_loss_composition_k|

@ qwen_rloo_countdown_k_8_beta_0.05_Ir_1e-05_batch_8_rows_490364_2025-06-07_02-19- 1.3647
25/train_loss_composition_rollout

1.3118 300 10.79 hr

Figure 16: RLOO loss composition with a KL divergence term. The KL term keeps the
distribution close to the reference distribution.

train/response_len

20 40 60 80 100 120 140 160 180 200 220 240 260 280 30(

Smoothed Value Step Relative
398.7885 348.2813 300 10.79 hr
387.2678 343.0469 300 11.27 hr
363.6406 182 6.062 hr

Run ™
® qwen_rloo_countdown_k_8_beta_0.05_Ir_1e-05_batch_8_rows_490364_2025-06-07_02-19-25
® qwen_rloo_countdown_k_8_beta_0.05_Ir_1e-06_batch_8_rows_490364_2025-06-07_02-22-16
® gwen_rloo_countdown_k_8_beta_0.05_Ir_2.5e-05_batch_8_rows_490364_2025-06-07_08-02-37 400.0035

Figure 17: RLOO response length through the training process for different learning rates:
the length of the responses oscillate and tend to reduce as the steps increase. This could
be avoided if log probabilities were calculated by token.

15

B Summary of main files and folders created for the project

Name

Description

Explanation

linux_install.txt

Instructions

Includes instructions to run in Linux.

conda_env.yml

Conda configuration file

To create drlproject environment

pip_environment.txt

Pip installation file

List of libraries to be installed.

pip_list.txt

Library versions

Snapshot of working combination of library
versions.

main.py

Pipeline orchestrator

Runs the different pipeline options. If run
with no options show the most common
choices.

config/

Configuration folder

This folder contains hydra configuration
files, in yaml format, for the different
pipeline options

train_sft.py SFT trainer Pytorch implementation for SFT training of
Ultrafeedback and Countdown.
train_rloo.py RLOO trainer Pytorch implementation for RLOO training

of Countdown.

train_dpo_dopo.py

DPO/DPO-P trainer

Pytorch implementation for DPO and DPO-
Positive training of Ultrafeedback.

sampling.py

Model sampler

To assess accuracy of Ultrafeedback and
Countdown.

modelwrapper.py

Model wrapper class

With utilities for model preparation and
ChatML conversion.

datasetwrapper.py

Dataset wrapper class

Unified approach to prepare datasets for
SFT, preference datasets for DPO and
Countdown RLOO data sets.

utils.py Utilities Hydra support, specific data collator for
preferences and others.

process/ Dev and test Code and Jupyter notebooks used for pro-
duction.

tensorboard/ Tensorboard runs Set of Tensorboard runs.

Table 1: Overview of code and configuration files

16

C Code example for Gemini-generated augmented data

1| def gemini_generate_completion(observation) -> str:

2 # 1. QUERY

3 # Obtain the query from the observation

4 query = observation["query"]

5 # Obtain the target value to be computed from the query

6 target_value = extract_target_value(query)

7 # obtain the list of numbers to be used in the computation from the query

8 list_numbers_to_be_used_in_computation = extract_numbers_from_text_used_to_compute(query)

9

10

11 # Find a valid answer

12 answer = find_equation(target_value, list_numbers_to_be_used_in_computation)

13

14 if answer != None:

15

16 # API configuration

17 API_KEY = "<YOUR ACTUAL API KEY>" # YOUR ACTUAL API KEY

18 # For gemini-i.5-flash-latest, use vibeta

19 API_URL =

"https://generativelanguage.googleapis.com/vibeta/models/gemini-1.5-flash-latest:generateContent”

20

21 # Craft the prompt

22 prompt = f"""

23 Given the math problem: "{query}"

24 And the solution: "{answer}"

25 Provide a concise step-by-step thought process in natural language that explains how to solve the

problem to arrive at the answer. Keep the explanation under 5ee words.

26 e

27

28 # API request payload

29 payload = {

30 "contents": [{"parts": [{"text": prompt}]1}],

31 "generationConfig": {"maxOutputTokens": 1000, "temperature": 0.7}

32 }

33

34 # Make the API call

35 try:

36 response = requests.post(f"{API_URL}?key={API_KEY}", json=payload)

37 response.raise_for_status() # Checks for HTTP errors (4xx or 5xx)

38 result = response.json()

39

40 candidates = result.get("candidates")

41 if candidates and isinstance(candidates, list) and len(candidates) > o:

42 content = candidates[o].get("content")

43 if content and isinstance(content, dict):

44 parts = content.get("parts")

45 if parts and isinstance(parts, list) and len(parts) > o:

46 thought_process = parts[e].get("text", "No text found in the first part.")

47 else:

48 thought_process = "No 'parts’ found in content."

49 else:

50 thought_process = "No ’'content’ found in the first candidate."

51 elif "promptFeedback" in result: # Check for safety blocks

52 thought_process = f"Prompt was blocked.\nPrompt Feedback: {result.get(’promptFeedback’)}"

53 else:

54 thought_process = "No ’'candidates’ found in the API response or candidates list is empty."

55

56 print(thought_process)

57 if check_valid_answer(query, target_value, list_numbers_to_be_used_in_computation, completion,
debug=False):

58 # Check that the answer generated by Gemini is correct

59 return thought_process

60 else:

61 # amended thought process removing answer and adding <answer>no solution found</answer>

62 return replace_answer_content_by_no_solution_found(thought_process)

63

64

65 return thought_process

66 # Check word count

67 if "Prompt was blocked" not in thought_process and "No " not in thought_process : # only count if
there’s actual text

68 word_count = len(thought_process.split())

69 #print(f"Word count: {word_count}")

70

71 except requests.RequestException as e:

72 print(f"API call failed: {e}")

73 if hasattr(e, 'response’) and e.response is not None:

74 try:

75 print(f"API Error Response: {e.response.json()}")

76 except ValueError: # If response is not JSON

77 print(f"API Error Response (not JSON): {e.response.text}")

78 except Exception as e:

79 print(f"An unexpected error occurred: {e}")

80

81 else:

82 return "<answer>no solution possible</answer>"

83

84 return o

17

D Code example for Grok-generated augmented data

1| import os

2| import json

3| import requests

4| import re

5| from datasets import load_dataset

6| from typing import Dict, List, Optional

7| from tqdm import tqdm

8| import time

9| import random

10| from dotenv import load_dotenv

11

12| # Load environment variables from .env file

13| load_dotenv()

14

15| # Configuration

16| XAI_API_KEY = os.getenv("XAI_API_KEY")

17| API_URL = "https://api.x.ai/vi/chat/completions"

18| DATASET_NAME = "Jiayi-Pan/Countdown-Tasks-3tos"

19

20| dataset_id = "Jiayi-Pan/Countdown-Tasks-3tos"

21| dataset = load_dataset(dataset_id, split="train")

22

23| OUTPUT_FILE = "Jiayi-Pan_Countdown-Tasks-3tos_test_set_data_200.jsonl"
24| PROGRESS_FILE = "Jiayi-Pan_Countdown-Tasks-3tos4_test_set_data_200_progress.json"
25| MAX_RETRIES = 3

26| TEMPERATURES = [0.7]

27| SAVE_INTERVAL = 10 # Save every 10 rows

28

29| def load_huggingface_dataset() -> List[Dict]:

30 """Load the train split of the dataset from Hugging Face."""
31 try:

32 dataset = load_dataset(DATASET_NAME, split="train")

33 return [dict(item) for item in dataset]

34 except Exception as e:

35 raise Exception(f"Failed to load dataset: {str(e)}")

36

37| def load_progress() -> Dict:

38 """Load progress from the progress file."""

39 if os.path.exists(PROGRESS_FILE):

40 try:

41 with open(PROGRESS_FILE, "r", encoding="utf-8") as f:
42 return json.load(f)

43 except Exception as e:

44 print(f"Failed to load progress: {str(e)}. Starting from beginning.")
45 return {"last_processed_index": -1}

46 return {"last_processed_index": -1}

47

48| def save_progress(last_processed_index: int):

49 """Save progress to the progress file."""

50 try:

51 with open(PROGRESS_FILE, "w", encoding="utf-8") as f:

52 json.dump({"last_processed_index": last_processed_index}, f)
53 print(f"Progress saved: last_processed_index={last_processed_index}")
54 except Exception as e:

55 print(f"Failed to save progress: {str(e)}")

56

57| def call_grok_api(query: str, temperature: float) -> Dict:

58 """Call xAI Grok API to generate a synthetic completion for the given query and temperature."""
59 headers = {

60 "Authorization": f"Bearer {XAI_API_KEY}",

61 "Content-Type": "application/json"

62 }

63

64 prompt = f"""

65| For the following query, generate a correct completion that solves the problem presented. The completion must
follow the querys domain (e.g., mathematical problem-solving) and format (e.g., including <think>
and <answer> tags if specified). If the query involves a mathematical equation, ensure the answer in

<answer> </answer> tags contains only the expression without the ’'=' sign or target value. Output ONLY

a valid JSON object with a ’'completion’ field, wrapped in ‘‘‘json ‘''. Keep the response concise
and ensure valid JSON.

66

67| Query: {query}

68

69| Example Output (for a mathematical query):

70| ‘‘‘json

71

72 "completion": "Assistant: Let me solve this step by step.\\n<think> I need to use 10, 5, and 2 once to
make 12. Try subtraction: 10 - 5 = 5, but adding 2 gives 7, too low. Try multiplication: 5 * 2 =
10, then adjust, but no fit. After testing, no combination works perfectly, so I 11 adjust the
target for simplicity. </think>\\n<answer> (10 * 2) - 5 </answer>"

73| 1

AR

750"

76

77 payload = {

78 "model": "grok-3-latest",

79 "messages": [{"role": "user", "content": prompt}],

80 "max_tokens": 1024,

18

117

119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

165
166

"temperature": temperature,
"stream": False

}

for attempt in range(MAX_RETRIES):
try:
response = requests.post(API_URL, headers=headers, json=payload, timeout=30)
print(f"HTTP Status Code: {response.status_code}")
response.raise_for_status()
try:
result = response.json()
except json.JSONDecodeError as e:
print(f"JSON Decode Error (Temperature {temperature}): {str(e)}")
print(f"Response Text: {response.text}")
return None
if "choices" not in result or not result["choices"] or "message" not in result["choices"][e]:
print(f"Unexpected response structure (Temperature {temperature}): {result}")
return None
generated_text = result["choices"][e]["message"]["content"].strip()
json_match = re.search(r’‘‘‘json\s*([\s\S]«?)\s*‘‘‘", generated_text)
if not json_match:
print(f"No JSON code block found in response (Temperature {temperature}): {generated_text}")
return None
json_str = json_match.group(1).strip()
try:
synthetic_item = json.loads(json_str)
if not isinstance(synthetic_item, dict) or "completion" not in synthetic_item:
print(f"Invalid synthetic JSON structure (Temperature {temperature}): {synthetic_item}")
return None
return synthetic_item
except json.JSONDecodeError as e:
print(f"Error parsing synthetic JSON (Temperature {temperature}): {str(e)}")
print(f"Synthetic JSON: {json_str}")
return None
except requests.exceptions.HTTPError as e:
print(f"HTTP Error (Attempt {attempt + 1}/{MAX_RETRIES}, Temperature {temperature}) for query:
{query[:50]}...: {str(e)}")
print(f"Response Text: {response.text[:500]}...")
if response.status_code in (429, 503):
time.sleep(2 ** attempt)
continue
return None
except Exception as e:
print(f"Error (Attempt {attempt + 1}/{MAX_RETRIES}, Temperature {temperature}) for query:
{query[:50]1}...: {str(e)}")
return None
print(f"Failed after {MAX_RETRIES} attempts for query: {query[:5e]}... (Temperature {temperature})")
return None

def generate_query(item: Dict) -> Optional[str]:
"""Generate a query string from target and nums if query is missing.
if "query" in item and item["query"]:
return item["query"]
if "target" not in item or "nums" not in item:
print(f"Cannot generate query, missing target or nums: {item}")
return None
target = item["target"]
nums = item["nums"
if not isinstance(target, (int, float)) or not isinstance(nums, list):
print(f"Invalid target or nums format: {item}")
return None
return f"Using the numbers {nums} exactly once, with operations (+, -, *, /), find an expression that
equals {target}."

def generate_synthetic_data(dataset: List[Dict], max_rows: Optional[int] = None) -> List[Dict]:
"""Generate synthetic completions for up to max_rows randomly selected from the dataset."""
synthetic_data = []

Load progress
progress = load_progress()
last_processed_index = progress["last_processed_index"]

Randomly select 200 rows
if max_rows is None or max_rows > len(dataset):

max_rows = min(200, len(dataset)) # Ensure we don’t exceed dataset size
if max_rows <= o:

print("No rows to process.")

return synthetic_data

Get indices for random sampling, excluding already processed indices
available_indices = list(range(len(dataset)))
if last_processed_index >= o:

available_indices = [i for i in available_indices if i > last_processed_index]

If not enough rows remain, reset progress or adjust
if len(available_indices) < max_rows:
print(f"only {len(available_indices)} rows remain after last_processed_index={last_processed_index}.
Resetting progress.")
available_indices = list(range(len(dataset)))
last_processed_index = -1

19

167 save_progress(last_processed_index)

168

169 # Randomly sample max_rows indices

170 random.seed(42) # For reproducibility

171 selected_indices = random.sample(available_indices, min(max_rows, len(available_indices)))

172 selected_indices.sort() # Sort for consistent progress tracking

173

174 # Process selected rows

175 batch_data = []

176 for idx, data_idx in enumerate(tqdm(selected_indices, desc="Generating synthetic data",
total=len(selected_indices))):

177 item = dataset[data_idx]

178 query = generate_query(item)

179 if not query:

180 print(f"Skipping item at index {data_idx} due to invalid query: {item}")

181 continue

182

183 # Generate completions for each temperature

184 for temperature in TEMPERATURES:

185 synthetic_item = call_grok_api(query, temperature)

186 if synthetic_item:

187 new_item = {

188 "query": query,

189 "completion": synthetic_item.get("completion", ""),

190 "temperature": temperature,

191 "original_index": data_idx # Track original dataset index

192 }

193 for key, value in item.items():

194 if key not in new_item:

195 new_item[key] = value

196 batch_data.append(new_item)

197 time.sleep(0.5)

198

199 # Save every SAVE_INTERVAL rows or at the end

200 if (len(batch_data) >= SAVE_INTERVAL) or (idx + 1 == len(selected_indices)):

201 save_synthetic_data(batch_data, OUTPUT_FILE)

202 synthetic_data.extend(batch_data)

203 save_progress(data_idx) # Save the original dataset index as progress

204 batch_data = [] # Clear batch after saving

205

206 return synthetic_data

207

208| def save_synthetic_data(synthetic_data: List[Dict], output_file: str):

209 """Append synthetic data to a JSONL file without overwriting."""

210 try:

211 with open(output_file, "a", encoding="utf-8") as f:

212 for item in synthetic_data:

213 json.dump(item, f, ensure_ascii=False)

214 f.write("\n")

215 print(f"Synthetic data appended to {output_file} ({len(synthetic_data)} items)")

216 except Exception as e:

217 raise Exception(f"Failed to append synthetic data: {str(e)}")

218

219| def main(max_rows: Optional[int] = 200):

220 print(f"XAI_API_KEY: {os.getenv(’'XAI_API_KEY')}")

221 global XAI_API_KEY

222 if not XAI_API_KEY:

223 print("XAI_API_KEY not found in environment or .env file.")

224 XAI_API_KEY = input("Please enter your XAI_API_KEY: ").strip()

225 if not XAI_API_KEY:

226 raise ValueError("XAI_API_KEY is required. Get your key from https://api.x.ai or set it in a .env

file.")

227

228 print("Loading dataset...")

229 dataset = load_huggingface_dataset()

230 print(f"Loaded {len(dataset)} items from train split of dataset.")

231

232 print(f"Processing {max_rows} randomly selected row(s) with temperatures {TEMPERATURES}...")

233 synthetic_data = generate_synthetic_data(dataset, max_rows)

234 print(f"Generated {len(synthetic_data)} synthetic items.")

235

236| if __name__ == "__main__":

237 main()

20

	Introduction
	Challenges in Large Language Models
	Advancements in Reasoning with Reinforcement Learning
	Efficient Post-Training Strategies
	Evolution of Reasoning Techniques
	Objectives and Motivation

	Related Work
	Method
	Overview and Model Selection
	Experiment 1: Impact of Data Quality on SFT
	Experiment 2: RL Uplift After SFT
	Experiment 3: Balancing SFT and RL Training Steps

	Experimental Setup
	Creating a corrected dataset
	Creating a synthetically enhanced dataset

	Results
	Experiment 1: Impact of Data Quality on SFT
	Experiment 2: RL Uplift After SFT
	Optimal allocation

	Discussion
	Conclusion
	Team Contributions
	Extra-Credit: Evidence of work performed on Instruct and Countdown with further exploration of SFT, DPO, RLOO
	SFT for Ultrafeedback and Countdown
	Direct Preference Optimization for Ultrafeedback
	Additional Experiment 3: DPO-Positive for Ultrafeedback
	REINFORCE Leave One-Out (RLOO) for Countdown

	Summary of main files and folders created for the project
	Code example for Gemini-generated augmented data
	Code example for Grok-generated augmented data

